Difference between revisions of "Main Page/BPHS 4090"

From Physics Wiki
Jump to navigation Jump to search
Line 5: Line 5:
  
 
<h1>PHYS 4090 4.0 BioPhysics II</h1>
 
<h1>PHYS 4090 4.0 BioPhysics II</h1>
 +
This course will focus on applications of atomic, nuclear, and quantum physics in biology and medicine. Topics will include interactions between radiation and matter (including spectroscopy), principles of biological and medical imaging. radiation therapy in medicine, and micro/nano-fluidics. An array of modern experimental techniques will also be covered, such as: optical tweezers, atomic force microscopy (AFM), x-ray crystallography, and nuclear magnetic resonance (NMR, MRI). Relevant signal processing strategies such as spectral analysis (e.g., Fourier transforms) and image analysis (e.g., convolutions, tomography) will be covered in detail. A regular one-hour tutorial will serve to provide background training and hands-on support for student lab work. Prerequisites: SC/BPHS 2090 3.00 or permission of the instructor; SC/PHYS 2020 3.00; SC/PHYS 2060 3.00. Corequisite: SC/PHYS 3040 6.00. Course Credit Exclusion: SC/BPHS 4090 4.00.
 +
 
<br clear=right>
 
<br clear=right>
 
<h2>Course Director</h2>
 
<h2>Course Director</h2>
Line 20: Line 22:
 
</table>
 
</table>
  
<h2>Prerequisite</h2>
 
<ul>
 
<li>BPHS 2090 2.0</li>
 
<li>PHYS 2020 3.0</li>
 
<li>PHYS 2060 3.0</li>
 
</ul>
 
  
 
<h1>Laboratory Manual</h1>
 
<h1>Laboratory Manual</h1>

Revision as of 12:19, 11 December 2020

Raman logo2.png

PHYS 4090 4.0 BioPhysics II

This course will focus on applications of atomic, nuclear, and quantum physics in biology and medicine. Topics will include interactions between radiation and matter (including spectroscopy), principles of biological and medical imaging. radiation therapy in medicine, and micro/nano-fluidics. An array of modern experimental techniques will also be covered, such as: optical tweezers, atomic force microscopy (AFM), x-ray crystallography, and nuclear magnetic resonance (NMR, MRI). Relevant signal processing strategies such as spectral analysis (e.g., Fourier transforms) and image analysis (e.g., convolutions, tomography) will be covered in detail. A regular one-hour tutorial will serve to provide background training and hands-on support for student lab work. Prerequisites: SC/BPHS 2090 3.00 or permission of the instructor; SC/PHYS 2020 3.00; SC/PHYS 2060 3.00. Corequisite: SC/PHYS 3040 6.00. Course Credit Exclusion: SC/BPHS 4090 4.00.


Course Director

Dr. Ozzy Mermut

244 PSE

omermut@yorku.ca

Laboratory Technologist


Laboratory Manual