Difference between revisions of "Main Page/PHYS 4210/Bell's Inequalities"
Jump to navigation
Jump to search
Line 15: | Line 15: | ||
<td width=250> | <td width=250> | ||
<ul> | <ul> | ||
− | <li> | + | <li>Entanglement</li> |
− | <li> | + | <li>Parametric down conversion</li> |
− | <li> | + | <li>wavefunctions</li> |
− | <li> | + | <li>coincidence</li> |
− | <li> | + | <li></li> |
− | <li> | + | <li></li> |
Line 27: | Line 27: | ||
<td width=250> | <td width=250> | ||
<ul> | <ul> | ||
− | <li> | + | <li>Logic Analyzer</li> |
− | <li> | + | <li></li> |
− | <li> | + | <li></li> |
− | <li> | + | <li></li> |
− | <li> | + | <li></li> |
− | <li> | + | <li></li> |
</ul> | </ul> | ||
</td> | </td> |
Revision as of 12:12, 28 January 2014
Bell's Inequalities and Quantum Entanglement
Deep at the root of the underlying principles of quantum mechanics lies shadowy principles based on probability which never sit well with some people. This experiment is meant to shine some (laser)light on these principles, and see if we can't come to some deeper understanding of the underlying framework of Quantum Dynamics.
No better introduction can be given than the following set of famous papers, commonly referred to today by their author lists.
It is imperative that you read and understand these papers before you attempt to perform this experiment.
Another useful resource, more directly relevant to the experiment you will be performing is from Dehlinger and Mitchell [4].
Key Concepts
|
|
References
- ↑ A. Einstein, B. Podolsky & N. Rosen, "Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?" Phys. Rev., 47, 777-780 (1935)
- ↑ J.S. Bell, "On the Einstein Podolsky Rosen Paradox" Physics, 1, 195 (1964)
- ↑ J.F. Clauser, M.A. Horne, A. Shimony, & R.A. Holt, "Proposed Experiment to Test Local Hidden-Variable Theories" Phys. Rev. Lett., 23, 880 (1969)
- ↑ D. Dehlinger & M.W. Mitchell "Entangled photons, nonlocality and Bell inequalities in the undergraduate laboratory." Am. J. Phys. 70, 903 (2002)